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INTRODUCTION

Several current models of behavior in signal detection and recog-

nition experiments represent the observer's choice on each trial as

jointly determined by two distinct hypothetical mechanisms(Atkinson,

Carterette, and Kinchla, 1962; Luce, 1963; Swets, Tanner, and Birdsall,

1961). The first mechanismcharacterizes the effects of psychophysical

variables by defining a set of hypothetical sensory states, one of which

is activated on each trial° This mechanismis referred to as the sen-

sory process. The second mechanism,the decision process, is affected

by learning variables such as the relative frequency of the various

signal events on previous trials. The decision process is usually con-

ceived as converting the currently activated sensory state into an

overt decision through application of a bias mechanism.

Although the starting point of sometheories (and experiments to

test them) is the existence of the appropriate sensory and decision

processes (e.g°, Fox, 1953), others have emphasized the formal similarity

between choice behavior in detection tasks and choice behavior in simple

prediction experiments (Atkinson, Bower, and Crothers, 1965; Bush, Luce,

and Rose, 1964). In fact, models developed in the latter context for

simple detection experiments usually reduce to models appropriate for

probability learning under certain limiting conditions.

Probabilistic discrimination learning is an extension of probability

learning in which every trial is initiated by one of a set of cues, each

with a distinct probability distribution over the set of possible out-

comes (Popper and Atkinson, 1958; Atkinson, Bogartz, and Turner, 1959).
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If, given a particular cue, not all the possible outcome events are

equally likely, that cue is said to be correlated with the outcome. Thus,

each cue is associated with its own non-contingent reinforcement schedule

and a subject can learn to use the cue-outcome correlations to help him

makean outcomeprediction on each trial°

Just as a simple recognition or detection situation is formally

similar to a simple probability learning experiment, so we may develop a

psychophysical analogue to the probabilistic discrimination experiment°

The resulting paradigm, which we refer to as a cued-detection or cued-

recognition task, associates with each of a set of cues a particular

probability distribution over the set of signal events° In addition,

feedback corresponding to the outcome in the prediction experiments

usually concludes each trial by informing the subject which signal event

actually occurred on that trial° The results of probabilistic discrimi-

nation learning experiments suggest that correlated cues should cometo

control behavior in a cued-detection or recognition task_ i.e., a subject

will cometo hold several response biases simultaneously, with the effec-

tive bias on a given trial being determined by the cue on that trial°

This possibility was recently investigated in the context of an

auditory two-interval forced-choice detection task involving three visual

cues (Kinchla, Townsend, Yellott, and Atkinson, 1966). The cues were

shownto have the predicted effect on the subjects' response behavior

and the results generally supported a finite-state detection model sug-

gested by Atkinson and Kinchla (1965)o

In this paper, cued-recognition behavior is studied in an experi-

mental setting developed by Estes and Taylor (1964). A model that c_n

2



be interpreted as a generalization of the Atkinson-Kinchla detection

model (Atkinson and Kinchla, 1965; Atkinson, 1963) and as having close

ties with the Estes serial-processing model (Estes and Taylor, 1964;

Estes and Taylor, 1965) is presented and applied to the experiment° It

will be seen that under rather general assumptions about the bias mech-

anism, the experimental results stringently delimit those cases of the

general model that can explain the data°
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General Characterization of Experimental Procedure

The present study deals with a visual recognition situation in

which one of two types of stimuli is briefly exposed on every trial, and

the subject's task is to respond by indicating the stimulus type that

occurred. We shall refer to the two types of stimuli as S1 and S2 and

to their related responses as A1 and A2, respectively. A reinforce-

ment event that informs the subject which stimulus type was presented

terminates the trial. The information event that denotes an S1 occur-

rence will be called an El, and the event that denotes an S2 occurrence

will be called E 2. In the experiment reported here, correct information

was always given to the subjects.

Each stimulus is in the form of a matrix and consists of a fixed

number, D - l, of consonant letters from the English alphabet, plus

one of two other symbols (which are not drawn from the English alpha-

bet). Thus, each stimulus display contains D symbols. We shall

call the consonants noise symbols and refer to any member of this class

of symbols as ZO. In addition, we shall designate the other symbol

present in the display as a signal symbol or simply a signal. It is the

signal embedded in the arrangement which specifies the stimulus type. De-

noting one of these signals as Z1 and the other as Z2, we specify an

S1 by the presence of a Z1 in the display and an S2 by the presence

of a Z2 in the display. Thus an S. may be thought of as a stimulusi

display consisting of a signal Z.I embedded in an ara_ay of Z0 symbols.
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In the experiment to be reported, ZI was a circle with a vertical bar,

and Z2 was a circle with a horizontal bar, e.

A feature of the psychophysical task under consideration

is that every trial is initiated by one of four cues; in the present

case, one of four differently colored lights. Let us denote these

cue events Cl, C2, C3, and C4. Each cue has an equal likelihood

of occurrence; however, every cue is associated with a different

probability distribution for the two types of stimulus presentation,

S1 and S2. Let the probability of an S1 presentation, condi-

tional upon the initiation of the trial by cue Ch, be referred to as

P(Sl]Ch) = _h (h = 1,2,5,4)

If Yl = Y2 = Y3 = 74' the cues are uncorrelated with the signal events;

otherwise the schedule is said to be cue dependent or correlated.

In the cued-recognition situation specified above, the following

variables can be manipulated: (a) physical parameters of the stimulus

displays such as stimulus exposure duration, (b) presentation schedule

of S1 and S2 for each of the cues; and (c) the outcome structure that

specifies the payoffs associated with correct and incorrect responses.

The theory that will be developed will describe performance as a function

of variables relating to (a) and (b) above, but the experiment reported

here involved only manipulation of the presentation schedules associated

with the various cue events. The notation developed above may be summa-

rized in the following glossary:

5



Ch: one of the four cues that initiate each trial (h z 1,2,3,4),

Si: stimulus type i contains one signal, Zi and a set of Z0

symbols of size D - 1 .

Aj: response by which the subject indicates an occurrence of

stimulus S. (J = 1,2).
0

Ek: feedback event informing the subject that stimulus Sk

occurred (k = 1,2).

Zo: a noise symcol.

Zl: signal l: specifies an S1 stimulus.

Z2: signal 2: specifies an S2 stimulus.

D : the number of symbols in each stimulus display.

7h: probability that a_i S1 is displayed following initiation

of the trial by Ch (h = 1,2,3,4).

The events of a trial occur in the following sequence:

a) Presentation of cue Ch (h = 1,2,3,4).

b) Brief exposure of stimulus S. (i = 1,2).
1

c) Subject makes response A. (j = 132).
J

d) Trial terminates with information event E i.

In the present experiment the subject was instructed to make a correct re-

sponse as often as possible, and each trial terminated with an information

event which told him whether he was correct or incorrect. There were no

monetary payoffs or penalties for correct or incorrect responses.



The major dependent variable is the probability of an Aj response,

given that stimulus Si occurred following Ch. This quantity is denoted

as P(AjlSiCh). The subject's performance on a trial initiated by Ch

can be described by the stochastic matrix

p(h)

AI . A 2

S1 "[p(_ISIC h) P(A21SICh)"S2 (_IS2C h) P(A21S2C h)

The reader should note that the probabilities P(_ISICh ) and P(_IS2Ch)

completely specify the matrix p(h), which we shall refer to as the per-

formance matrix associated with cue Ch.

Other quantities of interest can be defined in terms of P(AII SIC h)

and P(AIlS2Ch). Frequently we want to know the probability of an

response independent of the stimulus event; namely,

P(AIIC h) = P(_ISICh)Th + P(AlIS2Ch)(1-Th) •

Also of interest is the probability of a correct response (denoted c):

P(CICh) = P(_ISiCh)Th + P(A21S2Ch)(I-_h) •

An incorrect response will be denoted c.

Another important dependent variable is the subject's response time

or latency. We will refer to his average latency, given response A ,
J

stimulus Si, and cue Ch, as

E(LIAjSiC h) ,

where L is the random variable representing the latency on a trial, and

7



E maybe thought of as the expectation or averaging operator. Note that

in contrast to the conditional response probabilities, the four latencies

specified by E(LIAjSiCh) for each cue are independent. However, as is

the case with the performance probabilities, we can define certain mar-

ginal quantities of interest in terms of E(LIAjSiCh). In fact,

E(LISiCh) = E(LI_SiCh)P(_ISiC h) + E(LIA2SiCh)P(A2_SICh)

°

is the average latency conditional on a Ch and Si. Next,

E(LIAjC h) = E(LISIAjCh)7 h + E(LIS2AjCh)(I-7 h)

is the average latency conditional on an A. response and Ch. Also ofJ

interest are

and

_(_ISiA1Ch)P(hlSlCh)_h÷_(_lS2A2C_)P(A_S2Ch)(1-Th)

_(_[cCh)-- p(_ISlCh)_h + P(_IS2Ch)(l-_h)

_(_ISlA2Ch)P(_ISlCh)_h ÷ _(_IS2hCh)P(hlS2Ch)(l-7h)

E(LI_Ch)= P(A21Sieh)Th+ P(AIIS2Ch)(I-7h) '

which are the expressions for the average latency given acorrect and in-

correct response respectively for cue Ch. Finally,

_(Tlch)= _(_ISlCh)_h + _(_IS2Ch)(i-7h)

is the overall latency for cue Ch.



DEVELOPMENTOF THERECOGNITION-CONFUSIONMODEL

In this section, a model for the experimental situation is presen-

ted and somepredictions are derived° Twocases of the general model

that seemgermaneto the present experiment are examined, and several

aspects of the subject's performance are derived° Finally, a few com-

ments will be madeconcerning the relationship of the model suggested

here, to other current formulations°

Throughout the theoretical section we shall drop the subscripts

and superscripts referring to cue lights, since these are important only

in defining the result of a manipulation of the bias parameter in the

models considered here. Theoretically, all the points generated by

manipulation of the subject's bias should lie on the sameROC(receiver-

operating characteristic) curve.

Wewill now state the axioms of the general model in a verbal

fashion and then explicate them through the use of matrices.

Axioms:

1. At the instant of the stimulus offset, a random sample, S, of the

symbols in the display is registered by the subject. The sample is

of fixed size d.

2a. The subject processes, or scans, these symbols sequentially in a ran-

dom order. Each symbol scanned is relegated to one of three classes,

the assignment of which is represented by the following hypothetical

state:

i) So, the state corresponding to an assignment of the scanned

symbol to the class of noise symbols,

9
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ii) Sl, the state corresponding to an S1 assignment, and

iii) s2, the state corresponding to an S2 assignment.

It is assumed that the processing time for each symbol is _t,

1
constant over time and symbols.

a

2b. The probability that s.l (i = 0,1,2) is activated when Zj (j = 0,1,2)

is processed is, in general, determined by_ i) when the symbol is

processed relative to the other symbols in the sample S, 2) the

particular class to which the symbol belongs.

3a. If sI or s2 is activated, processing of the sample terminates and

the subject makes the appropriate response (A1 for sI and A 2

for s2).

3b. If sO is activated, processing continues.

plicit "response" by the subject as A 0.

3c. If the subject processes all d

We refer to this im-

of the sample symbols without acti-

vating either of the states sI or s2, he guesses, responding A I

with some fixed probability go The quantity g will be referred to

as the bias parameter° The value of this parameter will depend on

the cue light that initiates the trial°

i_ The legitimacy of the assumption that the processing time is identical

for all the symbols depends on the extent to which the subject uses the

same number of observing or testing responses on each symbol. For example,

a subject may be able to look for the joint occurrence of a circle and a

horizontal or vertical bar in one _to If he "sees" either of these joint

events, SI or s_ is activated_ otherwise so is activated° In this
case the _t constancy over symbols would be justified°

However, it may be that the subject looks first for circularity_ if

he detects circularity, he looks to see if a horizontal or vertical bar

lies within the circle. If circularity is absent, an sO is activated.
If circularity is present and the next observing response leads to the

detection of a vertical or horizontal bar, s_ or s2, respectively, is

activated; otherwise sO is activated° in t_is instance, some Z0 sym-

bols would be processed faster than a Z1 or Z2 and the assumptlon
would require modification°

l0



Wemay represent these axioms by several matrices which explicate

the properties of the axioms from the momentof stimulus presentation to

the time of the subject's response°

First, we relate the stimulus display to the type of symbol processed

at time iAt, conditional on no sI or s2 activation occurring prior

to iAt.

M __

Z0 ZI Z2

1 ]Sl[ g o
i '

s2 o

where, as before, D is the number of symbols in the display° Note that

M is not a function of i.

The matrix relating the type of symbol scanned at iAt to the

identification or hypothetical activation state is

N.

1

Z0

= ZI

Z2

sO sI s2

l-xi-Yi xi Yi

l-ai-b i a. b.1 1

| , i il-a. -b. b
l l 1 ai

where s. denotes the hypothetical state corresponding to the assignment
J

.th
of a symbol to the s. class° Note that N. is undefined for the i

j l

step in the scan on a particular trial given that an sI or s2 has al-

ready occurred, and its entries are functions of i.

The axioms further state that the identification state

related to the subject's responses by the matrix:

so

Q = sI

s2

A0 A I A2
m

i 0 0

0 i 0

0 0 i

ll



Since the axioms posit that the result of processing a symbol Zi

is always either an activation of state si (recognition) or one of

the other two hypothetical states (confusion), wemay refer to any model

that satisfies the axioms as a recognition-confusion model.

R0C Curves

A characteristic of the subjectis performance that is of consid-

erable interest is his R0C curve. The abbreviation R0C signifies receiver

characteristic; the R0C curve relates the quantity P(AIlSI)operating

to the quantity P(AIlS 2) when the stimulus conditions are fixed and

learning variables are allowed to vary. In the present study, it is expec-

ted that manipulation of Fh over the four cue lights will generate an

R0C curve for each s_oject. The bias parameter associated with cue Ch

should reflect the 7 h value.

In this section, we shall develop the R0C curve for the general case

in a functional form and then explicitly for the model that is defined by

letting the entries in the matrix N. be constants.
1

An A I can follow presentation of

by improper activation of sI by a Z0;

SI in essentially three ways_

by proper activation of sI

(i.e., activation of sI by ZI) ; or by guessing. Further, the form of

the function P(AIISI) will depend on whether or not the signal was in-

cluded in the sample. Hence, we conditionalize on each of these events

and then tak_ the expectation with respect to these events; this yields

the marginal P(AIISI).

Let P(_ISI,ZI, I) be defined as the probability of an AI re-

sponse, conditional upon the location of ZI at position i in the

sample S. Then,
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P(AIISl,Zl,i)
i-i j-I . i-i

= _x ,k___o(l-Xk-Yk) + j_l(l-xj-yj)a ij=l j

i-1

+ _ (l'xj-Yj)(l-ai-b i)
j=l

d j '-i

j '_=i+l j k-i+l k J '

i-i d

j=i d J '=i+l

= Ai + Bia i

i0 if j' = i + iwhere 5j, = otherwise,

and Xo = YO = O.

Similarly,

+ Ci(l-ai-bi)+ Di(l-ai-bi)g,

i-1 j-i i-1

j=l J k=O j=l

i-1

+ _ (l-xj-yj)(l-a_-bi)
j=l

d j'-I

j'=i+l o' k=i+i

i-i d

][ i ' b'+ i_(_-h-yj)(-ai-i) [[ (_-h'-Yj')g
j:i j '=i+l

=A. + ' +C i ' ') +Bibi (1-ai-bi Di(l-_i.-b_.)g

If the signal is not in the sample, and if we let

probability of an A I response conditional on ZI

P(A lls I,Z I _ S) be the

not being in the sample_

13



• ,4

then

d j-ip(A11Sl,Z1 ¢ s): Z x. ]](l-xk-y_) + (1-xj,-yj,)g.
j=l 0 k=O j'=l

The corresponding expression for P(AIIS2, Z2 _ S)

Nex%

is the same.

P(AIISl) : _.i(P(AllSl,Zl,i)}+ P(I,Zl _ SlSI) ,

P(A11S2) : _±[P(ils2,z2,i))+ P(AI,Z2 _ SlS2) ,

where E i denotes the expectation with respect to i, the position on

which the signal happens to fall within S an d P(AI, ZI _ SIS I) =

(! - s). Thus,

Di(l-ai-bi)g] + E + Fg, where

d

F : - (1-xj,-yj,).
j'=l

P(7_!SI) = Ei[A i + Bia i + Ci(l-ai-b i) +

d _ x. (l-Xk-Yk) and
E = (1 - _) j=l J k=O

A similar expression holds for P(A_IS2).

Solving the expressions for P(A!IS I) and P(_IS2) for g and

setting the resultant formulae equal to one another_ we can write

P(AIlSI) as a function of P(A I $2):

[_i[Di(1-a'-b')]+_]]_ ! [P(nllS2 ) _ Ei[A i + Bib' + ' ' ] E]
P(AIISI) = [Ei[Di (l-a'-b')]ll + i Ci(l-ai-bi) -

+Ei[Ai_ + B.ali + Ci(l-ai-bi)]'-- + E

Since the coefficients are independent of g, it follows that P(_ISI)

is a linear function of P(AIIS 2) as the bias parameter g varies. That

_i[_i(1-ai-bi)]+ F

Ei .-b. Fis, the ROC curve is a straight line whose slope is [Di(l-a'l m')] +



For this model, a necessary and sufficient .condition for the line to be

of slope 1 is that Ei[Di(1-ai-bi) ] = Ei[Di(1-a__b'i)]. The y inter-

cept is given by

Ei[A i + Bia i + Ci(l-ai-bi)] + E

Ei[Di(l-ai-bi)] [Ei + ' + ] + E]- E [D.(l-a'.-b'.)] [Ai Bibi Ci(l-ai'bi)
i • i i

The linearity of the R0Ccurve follows from the fact that both P(AIIS1)

and P(A2]S2) are linear functions of g. The intuition behind the slope,

Ei[Di(l-ai-bi)] + F "

Ei[Di(l-a'.-b'.) ] + F '1 1

is that if a i + b.l is, on the average, small relative to

subject uses his guessing bias more on SI trials than on

hence, if g increases under these conditions, P(AIISI)

than does P(AIIS2) and the slope is greater than one.

large relative to a_1 + bl, the reverse holds.

On the other hand, the effect of processing a Z0

' + bl., theai

S2 trials;

changes more

If a i + b i is

is the same on

the average for SI and S2 trials and therefore does not affect the

slope.

When the activation process is assumed to be invariant over time,

sO sI s2

N. = N = ZI 1-a-b a b1

Z 2 1-a'-b' b' a'

15



The R0C curve can again be developed by first deriving

_iEP(mlsl,zl,i)--_, -]= d - + a

(l-a-b)x[,i-(l-x-Y)d
[ (x+y)2

d(l_X_y)d-l
x+y + d(l-a-b)g(l-x_y_-i]-

It should now be evident that

form except that a' and b' are substituted for a and

tively. The terms P(AI, ZI { SISI) and P(AI, Z2 _ SISI)

oped as before and combined with Ei[P(AIISI,Zi_i)] and

respectively to obtain P(AIISI)

in terms of P(AIIS2) yields

EI[P(_IS2,Z2i)] is of exactly the same

b respec-

are devel-

Ei[P(Ail S2,Z2,i)]

and P(AIIS2). Solving for P(AIISI)

P(AilSi) :
1-}(a+b)-(i-_)(x+y)

l-d(a'+b')-(l-d)(x+y)

1 {xd
X

(x+y) 2

b' x [i-(l-x-y) d• [l-(l-x-y)d] + _x+y [l-(l-x-y)d] + (l-a'-b') _ x+y

i]} i{ _ x Ei_(l___y)dja(l-x-y)d- _ +g ×_ (x+y)2

× [i-(l-x-j)d_+y+ a-i- [i-(i-x-y) d] + (i-a-b)
x+y



Special Cases

We next consider two special cases of

experimental interest:

Case 1 N i

Ni that are of particular

Case 2 N.
1

Zo

= Z1

Z2

so sI s2

z2zlz°[i (l-Ulqol(l-ulCl-qllO]

so sI s2

vi q(l_v)i •(1-vi)(l-q)

0 1 0

0 0 1

We see that the basic structure of these eases is the same, inclu-

ding the number of parameters; the difference is tha_ one is a function

of i and the other is constant. An important property common to both

is that whenever the subject processes a signal symbol, he recognizes it

with probability one. Case 1 implies a constant probability over time of

an sI or s2 activation by Z0, but Case 2 implies that the likelihood

of an improper activation increases over time. The first would hold if

the subject is able somehow to recharge his "image" or trace of the sample

S until all d symbols are processed. The second would apply if the mem-

bers of the sample were fading geometrically so that, say, after time i_t

the quantity v i represented the proportion of the symbol remaining for

the subject to process. It should be of interest to compare predictions

for these two cases for some commonly measured dependent variables.
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The expressions for each case for P(AIISI), P(AIIS2), and the

R0C function will be presented. These will be followed by development

of four conditional latencies: E(LI_Si), E(LIAIS2), E(LIA2SI) and

E(LIA2S2). As indicated earlier, other quantities may be easily derived,

once the expressions for these basic quantities are known. Following the

procedure developed above, we can easily find P(AIISI), P(AIIS2), and

the ROC curve for Case I.

i
P'AI'Sl',, , : _ +

i l-u d

2D l-u

i ! l-u d

P(A11S2)--2 2D !-u
d d i

+ (l-_)u (g-T) ,

P(AllSI) = P(illS2) +
i l-u d

D 1-u

Similar!y_ for Case 2:

d
i i _v 2

P(AllSl) = Z + _ i=l
2+ (i-_)_ (g-) ,

P(AIIS2) 1 1 2= 2 2D _v
i=l

.i(i-1)
i _v 2

P(AIISl) = P(AIIS2) + D i=i



Let us begin the latency derivations by assuming that L =

(ST + _)_t + t O where L is the total latency or response time, T is

a variable which represents the time in At units to arrive at a guess-

ing decision, 8 =i_ otherwise,if guessing occurs_ _ is the random component

representing the processing time in _t units, and t O is the duration

contributed by the subject's motor response° When g is noticeably

greater than ½, it maybe that the associated guessing time is shorter

for A1 than for A2, and when g is less than ½, the guessing time

for A1 maybe longer than that for A2 (see Friedman, Burke, Cole,

Keller, Millward, and Estes, 1964)o In order to take account of this

possible difference in the guessing latency componentdue to a difference

in guessing bias, we suppose that two guessing latencies exist, one for

the preferred response (bias parameter greater than ½) and one for the

non-preferred response (bias parameter less than ½)o Wewill distinguish

the two latency componentsby appending subscripts to To Whenwe are

comparing theoretical predictions for latencies conditioDalized on Al

and A2 responses, we shall appendthe subscripts 1 and 2, respec-

tively, to allow for the possibility that when g _ ½, TI _ T2o In

general, the preferred response _essing latency will be denoted TP

and that of the non-preferred guessing latency will be denoted Tp.O

For our purposes, the time required to process one symbol (At)

and the motor response time (to) can be considered as constants to be

estimated from the data° Hence, our latency results will be derived in

terms of _ and T.
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For Case i, the conditional latencies of interest can be written

l-ud rl_ ] +

= )+
_ d d ii + i I-_a + (l-g)u(g-g)
2 2D l-u

_(l+u_) _ l_ _(g_½) + g_}+ 2D(1-u)+ (l-_){_1-u +

d d i
1 1 1-ua+ (z-g)_ (g-g)
2 2D l-u

_,(_+_IA2sI) :

_(±+,)(l_, _) + _(l+, _) _ i 1-_d -" "

d dl
_- ]- 1-ud + (1-g)u (_-g)
2 2D l-u

The latency expressions for Case 2 are similar in structure to their

parallels in Case i.

_,(_+_1%_sI)

d v + d i _iv
[]--_ - _] _(__-V) +_ i--1

i(i-_) a(_+l)

+(1-_)[_(_-_)+_]v

i(i-l) ._(a+z)

l+ 1 d • 2 d 2 1
i=l

2O



_(_IAlS2)

1-v_- d v _ _ 1 d _
_[l_-Vf_g_J'S(l_v) -_ E iv 2 d 1 2÷(i-_)[d(g-_)+g_]v

i=l

i'(i-i____! d(d+1)

2 2D + (l-)v 2 (g )
i=l

_(_IA2S2)

1-v_ - _ d 1 _ i(i-!) d 1
2-[i_7L1-5-_] + 2bCl-v]+ _ Z iv 2 + (1-_)[dC_-g)+C1-g)_],-

i=l

d i(i-l) dCd+l)

i i 2 _ 2 ½
i=l

d(_+l)
2

E(_TIAesl)

_,[i- - ]+ d l Vd 2
-__ L iv2D(I-V)

i=l

d i(i-ll
1 1 2 d2 2D _ v + (1-o)v

i=l

+ (1-_)[d(½-g)+¢l-g)_]_
2

It is appropriate to mention a few properties common to both models.

For convenience, these properties will be presented in terms of the para-

meters of Case 1.

For u = i and d < D,

function of the bias parameter

the latency E(_+_TI_sI) is an increasing

g_ but E(_+STIA2S2) is a decreasing

function of g. The quantities E(I+STI_S2) and E(_IneSl) _re inde-

pendent of g when u = i. When 0 < u < i_ d < D, it is expected that

the latencies conditional on an A 1 response are increasing functions of

g since guesses always occur after all d of the sampled symbols are
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processed and hence are associated with the longest latencies. Increasing

g augmentsthe proportion of _ latencies that are associated with

guessing responses; it causes a decrement in the proportion of A2 la-

tencies that are associated with a guessing response. The theorem that

AI latencies are increasing functions of g but A2 lateneies are de-

creasing functions of g for all u when d < D, has not been proved.

However, calculation of the conditional latencies on a computer for various

values of the parameters has shownthis to be true.

To comparethe relations amongthe conditional latencies_ subscripts

are appendedto T which serve to indicate the associated guessing re-

sponse. It will be assumedfor simplicity that d _ i.

When u = 0_ all four of the iatencies reduce to

E(Z + $TklAiS j) = 1 ,

but when u = i,

E(_+ 5_llAlS2) = d + "_l' E(_+ 5_21A2s1) = d + "_2'

E(_+ 5_-ll%Sl) --
+ (l-_)g[d+_l]2D

! + (l-_)gD

and

E(_+ _21A2s2) :
+ (1-_)(l-g)[_+_2]2D

i + (l-_)(l-g)D

.22



It can be shown in this case (u = i) that

_(_+ 8_llAlS2)_>_(_+ _lIAlSl),

_(_+ _21A2Sl)___(_+ _21A2S2),

and equality holds among all four when d = l, Tk = 0 (k = 1,2). Also,

it can be seen that under the condition u = l, the Tk magnitudes

as well as g determine the ordering of two latencies conditionalized

on different responses. If T1 = T2 and u = l, then

and

_(_+8_IAiS2)= _,(_+ _TIA2SI),

_(_+ 8_14Sl)= _(_+ 8_IA2S2)

Note that an increase in

in E(I + 5_IAiS1) and E(I + 5TIAIS2)

to greater than ½; in this case if T
P

will depend on the relative magnitudes of

When d = D > i (0 < u < i),

g may be expected to lead to an increase

1
unless g goes from less than

> _np' the direction of change

Tp, ,Tp and g.

;(_+ 5_1%sI)= _(_+ 8_IA2S2)< _(_+ 5_IAlS2)= _(_+5_IA2Sl)

Note that in this case the incorrect latencies are shorter than the cor-

rect latencies.

When d = i, all the conditional latencies

E(_ + 5_I_s2), _(_ + 5_IA2S2), _(_ + 5_Ia2s1)

_(_+ _IA1sl),

assume the value i.
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Recognition-Confusion Model in Relation to Other Current Models

One way to exhibit similarities among models of behavior is to con-

sider a more general model and examine the conditions under which the

general model reduces to the various special cases. In this section we

shall use this method to bring out resemblances among the present model,

the serial processing model (Estes and Taylor, 1964, or Estes and Taylor,

1965), and a flnlte-state detection model (Atklnson, 1963, or Atkinson

and Kinchla, 1965).

It is necessary to modify two aspects of the recognltion-confuslon

model in order to obtain the appropriate generalization. First, the

activation matrix N i is expanded to include an additional state called

the uncertain state. Thus,

sO sI s2 s3

Ni:

Z0 a00

ZI alO

Z2 a20

aOl a02 a03 1

all a12 a13 I 'a21 a22 a23

where s3 represents the uncertain state. The a. entry refers to theDk

probability of activating state Sk, given that z. is processed atJ

time i_t.

The result of activating s3 at i_t is assumed to be a continu-

ation of processing, A0, unless the activation occurs at dght, in which

case the subject is presumed to guess. Under these assumptions the effect

of either an sO or s3 activation is the same, and hence the matrix N.1

in the recognition-confusion model presented earlier can be interpreted

as a collapsed version of N_.
i
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The second modification is that of allowing for the possibility

that processing of the symbols can be brought to a halt due to a drop

below threshold of all the symbol traces; when this occurs, we postu-

late that the subject responds by guessing.

The serial processing model (Estes and Taylor, 1964; Estes and Taylor,

1965) can now be obtained from the above formulation by stipulating that

d = D,

sO sI s2 s3

ZI 0 i 0 ,

Z2 0 0 1

and that m symbols are processed with probability i (during the stimulus

on-time) after which there exists a constant probability s on each suc-

ceedlng &t that the trace of the symbols will fall below threshold.

Although easily extended to more complex situations, the Atkinson

detection model (1963) was designed basically for application to simple

two-alternative forced-choice and yes-no signal detectionexperiments.

Since the forced-choice model can be developed from the yes-no type of

situation that occurs in each position or interval, we may examine the

activation matrix as it would appear for the presentation of one of two

stimuli:

11 _-

sI s2 s5

SI [all a12 l-all-al2

I
S2 la21 a22 l-a21-a22

L
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Previous experimentation had shown that a!2 = a21 = 0 so that N" was

reduced to

sI s2 s3

SI I_ 1 0 I-G 1 ] .
$2 _2 i-_2]

One w_y of obtaining N" from more primitive considerations that are

compatible with the present discussion is to assume that on each trial

a sample S of stimulus elements (of size di) is drawn from the

display. Then, using the established notation Zj to refer to a stim-

ulus element, I_" follows from ...._i_ activation m_-±_.

sO sI s2 s3

zolo oN'. = ZI i 01

Z2 0 i

Under this interpretation, aj = dj/D; that is, if the signal element is

contained in the sample, the proper hypothetical state is activated, other-

wise the subject is presumed to be in the uncertain state and therefore

responds by using his guessing bias. Note that here stimulus conditions

are assumed to be such that the trace remains above threshold until the

sample is processed.
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METHOD

Apparatus

The experimental apparatus employed was an automated two-fleld dual

tachistoscope at the Institute for Mathematical Studies in the Social

Sciences, Stanford University. The display terminus of the apparatus

was located in a sound-proofed, air-condltioned room. It sat on a 30-in.

high table and appeared as a wooden box 5 ft. 7 in. long, 4 ft. 1 in. wide,

and 2 ft. 4 in. high, on four 8 in. legs. At each of the two ends was a

subject station, which was formed by recessing a full-height 8 in. wide

panel lO in. into the box. In this panel was mounted a ground-glass

rear-projection screen, 8 in. wide and 6 _ in. high, centered vertically.

Behind the screen was a black metal plate bearing six lights and a large

circular aperture, neither of which was visible unless illuminated. A

plastic eyepiece was mounted flush with the outer face of the box, i0 in.

in front of the screen, aligned in height with the circular aperture.

Below each observation station was suspended a response panel, at lap

height, 12 in. wide and i0 in. deep. This bore a vertical array of four

rectangular buttons, each of which was i in. by _ in., and a horizontal

array of two buttons of identical size.

Displays were projected onto the screen through the large aperture,

providing an illuminated circle 2 I_ in. in diameter. Stimuli were dis-

played in a random-access slide projector (Spindler & Sauppe model SLX-750)

modified to mount a special light source (Sylvania electronic tube #RII31C)

characterized by rise time within 0.05 msec. and decay time within 0.025

msec. A second projector, optically identical to the first but holding a

single slide, served to illuminate the screen between stimulus exposures.
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Both projectors were concealed within the display box.

On both response panels, the four buttons arrayed vertically on

the left were used _or confidence-rating choices; the possible ratings

were l, 2, 3, and 4, with 1 being the topmost, 2 the second from the top,

down to 4 at the bottom. Of the two buttons arrayed horizontally, the

left one was employed as the A 1 response for Station 1 and for A 2

at Station 2; and the right one was employed as the A2 response at

Station 1 and as the A1 response at Station 2.

Of the six peripheral lights behind the screen, the two outer

lights served to provide information feedback, E1 or E 2. They appeared

as yellow _ in. circles containing a black slash which was vertical for

El, horizontal for E2. The right/left position of E 1 and E 2 on

the screen corresponded at each station to the rlght/left assignment of

A1 and A2 on the response panel. The four inner lights appeared at

both stations as l_ in. circles that were colored, from left to right,

blue-green, orange, light green, and red, roughly matched for apparent

brightness. They were functionally ordered C1, C2, C3, and C4 across

the screen, with C1 on the side corresponding to A1 and E1 .

Each subject station was equipped with an intercom unit connected with

a master unit in the control room. The control system of the apparatus was

located in an adjacent room, visually and acoustically isolated from the

display room. The control system, developed by Iconlx Incorporated, of

Menlo Park, California, read in the program statement of a trial, set up

the control functions, stepped through the cycle, and recorded subject infor-

matlon such as latency, response type, and confidence rating as well as the

trial statement, and then stepped to the next program statement.
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Programmedvariables for the present experLment included the slide

to be shown, the feedback alternative, and the cue lights to initiate

the trials.

Stimulus program tapes were generated by a PDP-1digital computer

which randomized the trial sequencesunder the constraints mentioned in

the procedure section. Theseprogram tapes were read into the control

system by a Teletype BRPEhigh-speed mechanical reader (lO0 lines per

second). The subject's response information, after being stored briefly

in a buffer, was read out to a Teletype Model 33 unit, which yielded

simultaneous print-out and punchedpaper tape. The print-out was em-

ployed primarily for calibrating the equipment during the two days of

practice and for monitoring the subject's output on a day-to-day basis.

Data reduction, on the other hand, was accomplished by transferring the

paper tape information to magnetic tape, where it was accessible to

processing by an IBM 7090.
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Procedure

As mentioned earlier_ each trial of the experiment was initiated

by one of the four cues: CI_ C2_ C3_ or C4. The four cues were colored

lights arranged in a horizontal row. After the cue light had been on

for 3 sec., a white pre-stimulus field appeared and remained on until

the stimulus was displayed 2 sec. later. A warning click sounded over

the intercom ½ sec. before the stimulus display was exposed. The stim-

ulus duration x was determined for each pair of subjects during a two-

day practice period and was then held constant for the remainder of the

experiment. When the stimulus field was turned off_ a white post-stim-

ulus field_ identical to the pre-stimulus field in size and intensity

was turned on; its duration (3 sec.) delimited the response interval for

the subject. During this interval_ he had to make an Aj response and

then a response that reflected his confidence in his perception of the

stimulus display. We will refer to a confidence rating k as CR k

(k = 1,2_3_4). The final 4 sec. of each trial contained the feedback to

the subject indicating the proper response for that trial. The events

of a complete trial and their temporal order are shown in Fig. i.

The stimulus field consisted of an array of 15 upper-case consonants as

Z0 symbols and either Z1 or Z2_ but never both. In terms of the nota-

tion developed earlier_ D = 16. Sixteen such arrays were constructed by

arranging a square matrix of 16 consonants under the constraint that every

letter should appear exactly once in every position; otherwise the arrange-

ment was random. Then_ each S1 array was constructed by replacing a con-

sonant with ZI_ leaving the remaining noise symbols unchanged. The Z1
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was substituted for a differently positioned noise symbol in each array,

resulting in sixteen SI stimuli° The S2 arrays were formed in the

samemanner except that a Z2 replaced the various consonants° Thus,

the result was sixteen SI stimulus arrays and sixteen S2 stimulus

arrays° The symbol _) was chosen as Zi and _ was chosen as Z2_

The actual arrays, before introduction of the signal symbols, are shown

in Table io Each array was reproduced on a glass slide for use in the

random-access slide projector,

Twenty-four subjects, divided into twelve pairs of subjects_ were

used for the experiment_ The subjects were run for two practice days for

the purpose of adjusting the stimulus duration so that both subjects per-

formed with less than perfect accuracy but at better than chance perfor-

manceo The best a subject could do by chance for Ch was P(c) = Yh if

7h > ½ and P(c) = i - 7 h

if Fh >½ and P(C) = 7h

ified by the expressions:

if y h < _-

if 7h < ½o

and the worst was P(e) : i- Zh

The simple threshold model spec-

P(AliSlCh): + (l-°h)%'

P(AllS2Ch) : (l-oh)gh ,

was used to estimate the subject's accuracy of percep%ion (specified by Oh)

and his guessing bias (gh)o To ensure tha_, under this simple model_ a

subject was performing between chance and perfect accuracy, it was suffi-

cient to manipulate the stimulus display duration so that 0 < Uh < i_

an estimate of o h was obtained from the expression _h = P(AIlS1Ch) -

P(AllS2Ch).2 Of course, no prespecified level of accuracy could be

2_/ Note that when 1 - x i - Yi = ai = a.1 = i in the recognition-confusion

model, the simple threshold model outlined above is obtained with _h = d/Do
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Table 1

Stimulus Arrays

SMWP RSFG KFDW

_HKZ BEXP GX_B
TCOO CDMW HRZP
XENB TNHK NSTM

CZMH ZWPB XNZD FHXS HXRN

_FB_ SGDC WMPR RCTW CKWT
XSNT NTRK KGHC DMPZ BFSG

KWRP HFMX FBST BKGN MDPZ

WPTR NTKZ GKSC

ZDNS XPMD NB_M
GKBF RHCB WPTX

_MXH SGWF ZHFD

TB CK PDHT MGBF DRNM

HS ZN MNGK PWHX KTSF

FXWM SBFR ZNKS PZXH

RPDG WXZC DTCR GCBW

BCGX

TRFH

MWDN

PZKS

Noise letters:

S1 stimuli:

S2 stimuli:

BC DFGHKMNPRS TWX Z

replaced underlined letters with _).

replaced underlined letters with _.
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obtained since the two subjects in a pair often were not equally sen-

sitive to the type of stimulus displayed.

An additional reason for the two days_ practice was to acquaint

the subjects with the presentation frequencies (Th) and to familiarize

them with e and (_ before beginning the test phase. This practice

with the actual presentation frequencies, together with instructions

that there existed a correlation of the cues with the presentation

frequencies of the signals, was meant to minimize cue learning during

the test phase° The test phase which followed required six additional

days.

The four cues each occurred on one-fourth of the tria!s_ and

each cue was associated with a particular schedule of the two signals°

One subject in each pair of subjects received the following cue-to-

color assignment: CI, red_ C2, green_ C3_ yellow_ and C4, blue.

The other subject received the assignment: CI, blue_ C2, yellow_

C3, green; and C4, red. During the test phase 240 trials were rum

per day with a constrained randomization for both cue and signal fre-

quencies. After 160 trials the subjects were given a i min. rest

break. Within an 80-trial block, each of the cues appeared 20 times_

15 of the CI trials were always SI trials (7] = .75)_ 72 x 20

of the C2 trials were SI trials, 73 x 20 of the C3 trials

were SI trials_ and five of the Ch trials were always Si trials

(_ = °25)° An important characteristic of the experimental design

was the symmetryin 7, that is, 74 = i - _i' and 73 = i - 72.
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Thus, the subjects obtained the same number of SI and S2 trials

in an 80-trial block despite the cue-dependent schedule. For half the

subjects, T2 = .60; we designated this set of subjects as Group 1.

The other one-half of the subjects had a 72 value of .90; we

designated this set of subjects as Group 2o Group 1 and Group 2 were

each composed of twelve subjects. A tabular summary of the presentation

schedule is presented in Table 2o

0he-half of the subjects randomly selected in each group, were

run on a schedule that included a completely new randomization for

each day of practice and each day of the experimental phase. The other

half of the subjects in each group were run on a random permutation

of the first schedule. For this second set of subjects, the pool

consisting of the randomizations for each of the eight days used for

the first set was rearranged in a random fashion°

The subjects were run two at a time on the apparatus_ each always

had the same partner and the same station at the apparatus. The two

subjects were placed at opposite ends of the tachistoscope, and neither

could see the other or the experimenter, who was in the control room

adjacent to the test room. Each subject had in front of him a panel

equipped with buttons for his Aj response and four buttons which

he used to indicate his confidence as to how clearly he saw the signal

that he reported. While the experiment was in progress, the subject

pressed his face to a viewing hood. The cue lights, stimulus display,
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Table 2

Presentation Schedule

Ch Yh

SI frequencies
per 80-
trial block

S2 frequencies
per 80-
tri_l block

Group 1

12 subjects

CI .75 15

C2 .60 12

C3 .4O 8

c4 .25 5

5

8

12

15

Group 2

12 subjects

Ci .75 15

c2 .9o i8

c_ .i0 2
P

c4 .25 5

5

2

i8

15
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and feedback lights appeared at the proper time on a vertical screen

which was grey until one of the lights was turned on behind it. The

stimuli were presented with the same duration to both of the subjects

in a subject-pair. The intensities of the tachistoscopic fields are

given in Table 3. The ambient light level was unmeasurably low

on the screens but provided 0.009 and 0°065 foot-candles illumi-

nation on the response panels at Station i and Station 2 respectively°

The stimulus array, when displayed, subtended a visual angle of 5°10 '.

A single symbol in the display subtended a visual angle of about i °.

A vertical schematic of the physical arrangement of the apparatus

and the subjects' positions with respect to it are shown in Fig. 2.

On day i of the experiment, each of the two subjects in a pair

was arbitrarily assigned to one of the stations at the apparatus° A

statement was read to the subjects concerning their obligations under

the terms of the experiment and the conditions of remuneration° If

both subjects agreed to these terms, they were given printed instruc-

tions which contained their actual tasks in the experiment° These

instructions read as follows:
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Table 3

Brightness of the Tachistoscopic Fields

(Measured in foot-candles)

Pre-stimulus

Post-stimulus _

Station i Station 2

4.43 1.51

Stimulus 2.45 i. 80

38



RESPONSE

STAT ION I

BUTTONS

VIEWING HOOD

f
red green

1
DISPLAY

PANEL

CONFIDENCE

RATI N GS

CUE LIGHTS
yellow blue

RE I NFORCEM E NT

REINFORCEMENT

._ blue yellow

C= C 2
CUE LIGHTS

CONFIDENCE

RAT I NGS

DISPLAY

PANEL

REl N FORCEMENT

I green red

c_ c4

VIEWING HOOD

RESPONSE

BUTTONS

STATION 2

Figure 2. Display and Response Apparatus°
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Instructions to Subjects

_nis is a device for presenting visual stimuli for brief intervals

of time.

Periodically you will be presented a visual display. Each display

will contain 15 letters and, in addition, either the symbol _) or the

symbol _. Your task will be to ascertain to the best of your ability

which of these two symbols is present on each trial, and to push the but-

ton corresponding to this choice.

It is not to be expected that you will see the symbol with perfect

clarity every trial. To help you in your performance, four colored lights

have been placed above the display panel. These lights are partially

correlated with the frequency of appearance of the two s_Cools _ and

_. On each trial, one of these colored lights will precede the presenta-

tion display. The s_nbol you see on the left response button is more

likely to be preceded by one of the two colored lights on the left, while

the symbol on the right response button is more likely to be preceded by

one of the two colored lights on the right. Furthermore, of the two

colored lights on the right, one is even more iikely to precede the symbol

on the right than the other; and of the two colored lights on the left,

one is even more likely to precede the symbol on the left than the other.

You may be able to improve your performance by using these colored lights

along with your visual observation of the display.

At the beginning of every trial, the index finger of the right hand

is to be placed over the right symbol response button and the index finger

of the left hand should be over the left symbol response button. Make

your symbol response with these fingers.
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In addition to pushing the button of the symbol you think was con-

tained in the display, you are ho push one of the four buttons you see

on the left; after making the other response. This will serve to show

your degree of confidence in what you saw. If you are absolutely sure

of what you saw, then push the "l" button; whenyou are relatively sure,

push the "2" button; the "3" button whenyou are relatively unsure; and

push the "4" button whenyou absolutely unsure, that is, guessing at

random. Do not allow the confidence-rating process to interfere with

the primary task of making a symbol _/_ judgment; accomplish the lat-

ter first and then decide how sure you were of what you saw. Note that

your confidence rating is to be based on your evaluation of your visual

accuracy each trial, not your assurance of being correct. This is in

spite of the fact that your primary responsibility with respect to the

symbol response is to do as well as possible using both your visual im-

pressions and the colored lights.

You have approximately three seconds after the display vanishes to

makeyour responses; be sure to makea 8/0 response and a confidence-

rating response on each trial. Immediately after you have madeyour

response, a sign indicating which symbol appeared in the display will

flash on; if _ was presented, then a sign representing this symbol will

comeon, and similarly for a _ symbol.

You can see an intercom phone on the apparatus. This is to be used

to communicatewith the experimenter if there appears to be a malfunction

in the equipment; this should be used only in the event that something

seemsto be wrong in the trial sequenceor presentation of the materials.
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The intercom also serves the purpose of sounding a click just before the

display is presented. Accompanyingthis click will be a bright disk on

which you mayfixate and on which the display will be presented.

Let us then reiterate a complete trial sequence:

1. Your right index finger is placed on the right symbol button and the

left index finger is placed on the left symbol button.

2. A colored light will comeon and stay on for the whole trial.

3. Shortly after this, the bright disk will comeon.

4. Next, a click indicating the display is about to be presented will
sound.

5. The symbol display will appear where the bright disk is, for a very
short time.

6. Shortly after this, the bright disk will go off.

7. Youwill immediately makeyour decision as to which symbol you think

appeared in the display and makethe appropriate response with the
left or right index finger. You need not wait for the bright disk

to vanish. Get as manycorrect as you can, using what you saw and

the colored lights.

8. You follow this with a rating of your confidence by pushing the con-

fidence-rating button which corresponds to your evaluation of the

accuracy with which you saw the symbol presented in the display.

9. Make the previous two responses on every trial, even if you have to

guess.
10. A sign will flash on indicating which symbol actually was in the

display for that trial.

ll. End of trial. Beginning of next trial.

Please keep your face pressed comfortably against the hood except

whenyou need to check the position of the response buttons whenmaking

your responses or during the brief rest period.



Any questions the subjects mayhave had after reading the instruc-

tions were answeredby referring them to the appropriate section of the

instructions. Whenthe subjects were satisfied that they understood the

experimental procedur% the. ambient light level in the experimental room

was lowered, the subjects were seated in comfortable, adjustable chairs

at their respective stationsj and the experiment began.

Each day, before beginning the session, the subjects were encour-

aged to refresh their memoriesby referring to the instructions if they

felt uncertain about any aspect of the procedure.

Subjects

Group 1 and Group 2 each consisted of twelve subjects drawn from the

Stanford University and Foothill College communities. All were students

or wives of students between the ages of eighteen and thirty who were

paid for their services. Visual acuity was required to be at least 20/20

after correction, but no subject had to be rejected on this criterion.

English was the native language of all the subjects. Group assignment

was on a random basis.
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RESULTS

Cue Differentiation

The average proportion of _ responses given to each of the four

cues for each day of the test phase is presented in Fig. 3; the results

for Group 1 are given in Fig. 3a and for Group 2 in Fig. 3b. The order-

ing of P(AlICh) corresponds to the ordering of 7h for both groups.

Thus, manipulation of 7h was associated with differences in the frequen-

cies.of A 1 responses.

We may present the results in Fig. 3 in a way that shows that the

more 7h deviates from ½, the more extreme are the associated response

---_n'_" In Fig. 4 the result of avera_in_.... PC_!Ci) and P(A_IC_)_.,

can be compared with the result of averaging P(AIIC2) and P(A21C3) for

Groups i and 2. As is expected, in Group i where the outside cues (CI

and C4) are more highly correlated with SI and S2 frequencies than

are the middle cues (C2 and C3) , the average of P(AIIC I) and P(A21C 4)

is greater than the average of P(AIIC2) and P(A21C3). In Group 2 the

average of P(AIIC I) and P(A21C4) is smaller than the average of

P(AIIC2) and P(A21C3) , since for that group the middle cues were more

highly correlated with the SI and S2 presentations than were the out-

side cues.

Since 71 and I - 74 were .75 for Groups i and 2, and 72 and 7 3

were different for the two groups, it is pertinent to ask if P(AIIC I) and

P(AIIC4) are affectedby these differences in 72 and 73 . As noted

earlie_ in both groups 71 and 72 were greater than 1/2 and 73 and

74 were less than 1/2; furthermore, CI and C2 were juxtaposed on one
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end of the array of cue lights, and C3 and C4 were juxtaposed on the

other end. This arrangement should enhance generalization between CI

and C2 and between C3 and C4o If generalization was an important

factor in the subjects' behavior, P(AIiCI) should be larger in Group 2

than in Group i, and P(AIlC4) should be smaller in Group 2 than in Groap

i° This prediction stems from the fact that Y2 _ YI' Y3 < Y4 for Group

2 and 72 _ YI' _3 > _4 for Group io Table 4 presents observed values of

P(AIICI) and P(AIIC4) for both groups. A t-test was performed on

P(AIICI) for the two groups, and a sepa_ate test was performed on P(AIiC4)o

Then, the average of P(AIiCI) and P(A2iC4) for each subject was ob_

tained and a t-test :run on the difference in this quantity for the two

groups. All of these tests led to an acceptance of the hypothesis that

P(AIICI) and P(AIIC4) were unaffected by manipulation of _2 and 73°

The overall P(AI) averaged over cues and subjects in each of the

groups is shown for each test day in Fig° 5° A large deviation from ½

would indicate a tendency for the subjects to make one of the responses more

than the other, in spite of the symmetry of the schedule [_l+_2+Y3+Y4)/4 = ½]o

In terms of the models discussed earlier (Cases i and 2), a finding of this

nature might be due to ¼(gl+g2+g3+gh ) _ _ or to q _ ½o There appears to

be a small but fairly consistent tendency to respond A2 more frequently

than AI. All but three subjects out of 24 made A I responses less than

half of the time, and the marginal P(AI) averaged over days was °27 for

both groups. This result does not seem to follow from an initial greater

familiarity of the subjects with C@ since the two practice sessions should

have brought equality in this respect°
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Table 4.

Observed Values of P(AIIC l) and

For Groups 1 and 2.

Subjects Group 1

l .90

2 .77

3 .63

4 .48

C 07
J .J_

6 .59

7 .74

8 .66

9 .71

lo .87

ll .91

12 .67

cI)

Group 2

.82

.77

.93

.65

.71

.73

.76

.70

.76

.82

.65

Group i

.52

.15

.27

.24

O7

.15

.25

.19

.23

.07

.23

.22

Group 2

.16

.17

.i0

.22

7g

.26

.23

.19

.10

.21

.18

.19

Average .74 .76 .22 .17
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Sensitivit_ as Affected by Presentation Schedule

' = l, an index of a subject'sIn the general model, when a i = ai

sensitivity may be obtained by subtracting the proportion of incorrect

from the proportion of correct AI responses [P(AIISI) -responses

P(_IS2) ]. This index (a function of d and 1 - x i - yi) expresses

the average likelihood that the subject processes the signal when it is

contained in the sample of d symbols. We shall call this index G.

The possibility has been suggested that with high cue-stlmulus

correlations, estimates of a subject's o might be lower than estimates

of his a with lower cue-stimulus correlations (Atkinson, 1965). The

reasoning is that since the subject can do quite well simply by appro-

priately biasing his responses when i_h - ½i is large, he may be in-

duced to relax his attention on those trials initiated by a cue having a

high correlation with Sl or S2.

Figure 6 shows daily estimates of the average c for the relatively

low correlated cues (02 and 03 for Group l, and o I and 04 for

Group 2) along with daily estimates of the average o for the relatively

high correlated cues. Call the average of 01 and 04' GI,4 and the

average of o2 and 03, 02, 3 . Cues C1 and C4 were the high correla-

ted cues in Group i, but C2 and C3 were the high correlated cues in

Group 2. A paired t-test showed that 02, 3 was significantly different

from GI_4 for Group 1 but not for Group 2. A paired t-test over both

groups on the difference between o for the highly correlated cues and o

for the low correlated cues was nonsignificant. On the other hand, there

seems to be a suggestion in the data that a is larger for the middle cues

than for the outer cues since 02, 3 tends to be greater than Ol, 4 for
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both groups. This problem will be treated further in the following section

and in the discussion.

ROC Curves: One Parameter Fits

Previous work with a cued-detection task in an auditory setting

has shown that the R0C curves for subjects performing in this type of

task can be well described by straight lines of slope 1 (Kinchla, Townsend,

Yellott, Atkinson, 1966). Recall that this situation obtains for the pres-

ent model when Ei(l - a i - bi) = Ei(l - a_ - b_).

The theory of signal detectability provides an alternative formu-

lation which includes prediction of curvilinear ROC curves. Under this

t.h_n_v. _k_ _t. n_ _n A n_ S2 presentation _nuld be represented by

a vector in k-space. Associated with SI and S2 are two k-dimensional

probability distributions. The subject behaves as if he knew the two dis-

tributions associated with the presentation of an SI or $2, and employs

these distributions to construct a likelihood ratio on each trial of the

probability densities associated with the current vector. The subject is

supposed to have established a cut-point on an axis of the logarithm of

the likelihood ratios; when the log of the likelihood ratio which arises on

a particular trial exceeds that cut-point, he makes a specified response,

and if the log-likelihood ratio falls below the cut-point, he makes the

other response.

The probability density functions of the log-likellhood ratios are

usually assumed to be normal and the normalized distance between the means

of the density functions is denoted d'. The quantities P(AIIS I) and

P(AIlS2) may then be computed for any cut-point using cumulative normal

curve tables and d'. For an account of signal detectability theory, see

Swets, Tanner, and Birdsall (1961) or Green (1960).
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In signal detectability theory, the analogue of the Slope i assump-

tion in the present model is the assumption that the variances of the

SI and S2 distributions are identical. Based on these assumptions, we

can obtain one-parameter fits of both models to the individual ROC curves

in the present experiment. The method used to fit the models was that

J
of mean square orthogonal regression (see Cramer, 1946). This method

seems more appropriate for fitting R0C functions than the usual regression

technique since both axes represent dependent variables. For a straight

line of slope i, the method of orthogonal regression reduces to the ordi-

nary least-squares fit. However, for the signal detectability analysis,

the method of orthogonal regression prevents the artificial inflation of

the error estimate given to points in the extremities of the ROC space

which occurs with the usual regression technique.

The curvilinear fit is obtained by selecting the d' which minimizes

the sum of the orthogonal distances (or deviations, the term we shall hence-

forth employ) of the observed points from the theoretical function. Simi-

larly, we may fit the present model by varying the intercept until a least

sum of the orthogonal deviations is obtained. The theoretical intercept,

as noted earlier, is a function of d and the Z0 confusion parameters.

However, for present purposes, we can treat the intercept as a single para-

meter to be estimated by the above method. Thus, both models are fit by

varying an index of the subject's sensitivity.

The results of these fits are plotted for each subject in Fig. 7

and Fig. 8. Table 5 presents the sum of the squared orthogonal deviations

of the two models for each subject in Groups i and 2. The two models

appear to do about equally well for Group i, but the curvilinear fit seems
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Table 5

Sum of Squared Deviations for the

Straight Line and Curvilinear Fits.

Group i Group 2

Curvi-

Subject linear

i .oo8

2 .001

3 .o05

4 .oo2

5 .012

6 .010

7 .ooi

8 .OO2

9 .oo3

i0 .002

ii .oo6

12 .002

Straight
Line

.010

.oo6

.oo6

000

010

OO2

00!

001

001

015

OO9

OO3

Curvi-

linear

.oo8

.002

.oo8

.oo3

.oo7

.o24

.OO3

.002

.001

.010

.002

Straight
Line

.oo6

.003

.oo9

.oo6

.oo6

.o28

.o18

.012

.oo8

.o39

.oo6

Averages .0045 .0057 .0060 .0119



better for a majority of subjects in Group 2. In fact, a paired t-test

showed a significant difference in the two types of fit for Group 2 but not

for Group 1 (P = .05). This is somewhat surprising in view of the finding

that the sensitivity index was significantly larger for the middle cues in

Group 1 but not in Group 2: larger a values for the middle cues would be

expected to enhance the appearance of curvilinearity in the ROC space. A

straightllne of slope greater than one would probably do much better for

several of the subjects (subjects 8, 9, lO, ll especially) in Group 1 than

does the straight line of slope one.

Latencies

Figure 9 presents the mean latencies plotted against 7 for the

two groups. There are several aspects of these data which bear comment.

The latencies seem to differ according to which stimulus type was

displayed, and there is a crossover of the S1 and S2 latencies,

with the S1 latencies being longer than the S2 latencies when 7 < ½

and shorter than the S2 latencies when 7 > ½- The latencies conditional

on the response made by the subject also show a crossover: the A1 la-

tencies are longer than the A2 latencies when

the A2 latencies when 7 > ½.

Conditionalizing on the joint event of an

over effect of the type notedfor the Ai and

7 < ½ and shorter than

A.S. reveals a cross-
Ij

S. latencies, both for
J

correct and incorrect responses. The fact that the AIS 2 and A2S I

latencies follow the same general form as the _ and A 2 latencies

respectively, suggests the possibility that the differential stimulus

effect is low on incorrect trials.
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l

Correct responses are associated with shorter response times on the

average in these data for both groups, but the overall average latencies

appear to be longer when Y > ½ for Group 2, with no appreciable difference

evident for Group i.

Finally, the members of Group 2 seem to have responded more slowly

on the whole than did those of Group i, but the difference was non-

significant according to an independent t-test.

Confidence Ratings

Figure lO presents

confidence rating, where

P(AIISI) and P(AIlS2) as functions of the

CR k refers to confidence rating number k.

It will be recalled that there were four confidence ratings with CR I

representing the most confident response possible, ranging down to CR 4

as the confidence rating the subject was instructed to give when he felt

he was guessing at random. The major effect to be noted is a general

regression of P(_ISI ) and P(_IS2) toward ½ as the confidence rat-

ing went from i to 3; at CR 4 there is an increase or decrease in the

proportion of _ responses made independent of whether an SI or an

S2 was presented. If 7 > ½, the proportion of AI responses increased

given CR4; and if y < _, the proportion of A I responses decreased

given CR 4. Thus we might infer that the subjects were able to grade their

performance in an effective manner employing CRI, CR2, and CR 3 to

rank their accuracy in decisions that were made on a sensory basis. Per-

formance on CR4, on the other hand, appears to reflect the subjects'

response biases. Although behavior in Groups i and 2 was highly similar,

Group 2 seems to have used CR 2 in a way slightly different than did

Group i. A slight increase in the

given CR •
2

A 2 bias seems to occur in Group 2
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THEORETICAL ANALYSIS

In this section, several cases of the general recognition-confusion

model described earlier will be applied to the R0C data with the aim of

specifying those models that correspond with the present experiment.

First, Cases i and 2 as developed earlier (page 17) will be tested against

the data and compared with one another as to goodness of fit. Then, one

1

of these cases will be employed to investigate whether the result P(AI) J

seems to follow from an asymmetry in confusability or an asymmetry in the

guessing bias. Finally to be considered are two cases that assume, in

contrast to Cases i and 2, that either the signals are confused with one

another, or with the noise symbols, rather than assuming that the noise

symbols are confused with the signals.

Case i and Case 2

Since Cases i and 2 were derived in detail earlier, it will suffice

here to present their associated activation matrices. The activation

matrix for Case I is

Ni

so sI s2

_L



and that for Case 2 is

Ni

Z0

= Z1

Z2

% sl

vi (l-vi)½ (1-vi)½

0 1 0

0 0 1

Each of the two models has six free parameters: the activation

parameter, u or v; the sample size d; the four bias parameters,

gl' g2' g3' and g4" The method of estimation for each subject con-

sisted of consecutively setting d equal to l, 2, 2, ... , 15, 16;

for each of these d values the sensitivity index, a function of u

(Case l) or v (Case 2) and d 3 was set equal to the intercept of

the straight line obtained by orthogonal regression and the resultant

"equation" solved for u or v. For some values of d, the only so-

lution to the equation was a u or v greater than one; when this

occurred, the parameter u or v was set equal to i. Next, the guess-

ing bias for each of the four points in the ROC space was obtained from

the expression for P(AIICh) (involving u or v, gh and d and the

observed value for this quantity. _ The six estimated parameters were then

used to predict P(AIlS2) and P(AIlS1) for the four cues after which

the sum of the squared devlationsof the observed points from the predic-
4

points was calculated: _ [[P(t)(AlIS2Ch) - p(°)(_IS2Ch)] 2 +
ted

h=l

[P(t)(AIlSIC h) - P(°)(_ISiCh)] 2] where t refers to the theoretical or

predicted value and o to the observed value. Thus, for each value of

d from 1 to 16, values of the other five parameters were obtain@d and
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used to provide a fit to the four points in the ROC space. After this

was accomplished for each value of d, that set of parameter values

that yielded a minimum sum of squared deviaticms of predicted from ob-

served points was selected.

Tables 6 and 7 present means and standard errors for the estimated

parameters, for the predicted and observed coordinates in the ROC space

and for the sum of the squared deviations of the predicted from the ob-

served points. The fits for Groups 1 and 2 are presented separately.

The most striking feature of these data is that Cases 1 and 2

essentially reduce to the same model. That is, when u = v = l, N i

becomes the identity matrix and the two cases are equivalent. 0nly

three subjects out of twelve in Group 1 and two out of twelve in Group 2

had u _ 1. These u values were .94, .96, and .97 for the Group 1 sub-

jects and .98 for both the subjects in Group 2. Estimated v values

were 1 for all twelve subjects in each group. Under the assumptions of

the model _, this result implies that there was a negligible amount of

confusion of the noise symbols with the signals.

A second interesting result is that the estimates of the bias para-

meters reflect much more strongly than did P(A l) (averaged over subjects

in each group) the apparent tendency to respond A2 more often than _.

Since for this analysis P(AIIS 2) and P(AIlS1) reduce to

P(Alls2) = (l-o)g

P(AIISl) : o + ,

where a = _D, the difference in P(_), corresponding to a difference
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in the guessing bias of gl - g2' is PI(AI) - P2(AI) = (l-c).(gl-g2).

Hence, an attenuated difference in P(_) is expected.

Tables 6a and 7a indicate that the CI and C4 points were fit some-

what better than the C2 and C3 points. Finally, it is interesting that

the standard errors of the observed points are closely approximated by the

standard errors of the predicted points (Tables 6b, 7b).

Case la and Case ib

The result (gl + g2 + g3 + g4 )/4 < ½ may follow from an asymmetry

in response bias or it may be due to the noise symbols being more easily

confusable with _ than with _). Since Cases i and 2 fit equally well,

the simpler Case I will be used here to investigate whether either of the

two hypotheses (response bias vs. confusability) is favored over the other.

To evaluate the proposition that there was an asymmetry in confusion,

it was assumed that the subjects' probability matched (gh = 7h) but that

q _ 5'i i.e., that the likelihood of confusing a noise symbol with signal

symbol ZI,_) , was not the same as the likelihood of confusing a noise

symbol with signal symbol

estimated: d, u, and q.

tivation matrix is

Z0

N. = ZI1

Z2

Z2,_. Three parameters then remained to be

This model will be denoted Case la. Its ac-

sO sI s2
D

u (l-u)q (1-u)Cl-q)

0 i 0

0 0 1

A model that will be referred to as Case ib was used to obtain a fit

under the hypothesis that an asymmetry existed in the efficacy of E 1 and

E2. Employing the simple linear model on the guessing bias:
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k

Learning function Stimulus type Feedback Probability

gn, h =

(i-e)gn_l, h + 8 Si,n_l, h El,n_l, h 7h

(l-8')gn_l, h S2,n_l, h E2,n-l,h l-Y h

where n refers to trial number. It can then be shown that

7 h 7h

= 7h+(l_Th)8,/e - 7h+(l_Th)_ "

Hence, rather than estimating the gh values separately, we can reduce

the number of parameters to three (d, u, 9) and at the same time obtain

an index of the relative effectiveness of E 2 and E1 (9). In general

we would expect to find 9 > i in the present data since this inequality

would imply a greater bias for the A2 response. The activation matrix

for this model is identical to that of Case i.

The method of estimation was similar to that used for Cases I and 2;

the only difference was that 9 and q were estimated for each subject

from expressions containing the overall average (over cues) of P(AI). For

Case la_

[ P(AllCh) - 2E(1- + D 1-u
q

d d i l-u d

D 1-u

and for Case Ib,

1 4 7 h ud(1 - _)

- .= l-u d:_ i d d 1 l-u d]
P(AIICh)- _[ -(I- _)u D l-u - 7h l-u

The results of these fits are presented in Tables 8 and 9 in a

manner comparable to that used for Cases i and 2.

Table 8 shows a superiority in terms of Z(DEV) 2 of Case la over

Case ib for Group i. However, this is offset by the fact that one subject
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in Group i (subject 5) had to be excluded from the data in Table 8, since

there was no set of parameters satisfying the constraints of probability

measurementthat could be estimated for that subject. Also, after subject

5 was deleted, there were still six subjects who were fit better by Case lb,

as opposed to five that were fit better by Case la.

_ronp 2 subjects (Table 9) are fit better by both models than are

the Group 1 subjects, and further, Caselb fits Group 2 better than Case

la in terms of _(DEV)2 and in terms of the numberof subjects (excluding

subject 3, who could not be fit with Case la) fit better by Case lb (seven

out of eleven). The observed averagesand standard errors in Tables 8 and

9 excluded subjects 7 and 3 in Groups1 and 23 respectively.

The reader should note that, as was expected, the fits were sub-

stantiallybetter when six parameters were estimated from the data (Cases

1 and 2). Also, the average values of q and _ clearly reflect the

asymmetry in P(AllC h).

Case 3 and Case 4

Cases 1 and 2 were based on the proposition that confusion occurred

when a Z0 was processed but not when a signal was processed. In this

section two cases that include an alternative assumption will be investi-

gated; namely, confusion may result from the processing of a signal symbol

but not from the processing of a noise symbol. Case 3 posits that pro-

cessing a signal symbol can lead to an sO activation but not an activation

of the hypothetical sensory state of the alternative signal. Thus,

No

1

Z
0

= ZI

Z2

sO sI s2

i 0 0

l-a a 0

l-a' 0 a'
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Case 4, on the other hand, supposes that the two signals may be confused

with one another but never with a

so

Zo I

N.1 = ZI 0

Z2 0

Zo

s1

0

a

1-a'

symbol. In this case,

s2

0

1-a

a T

Estimation for Case 3 was accomplished by stepping d from I to 16

and for each d setting a = (I/d) o16 unless (I/d)-16 > I, in which

case a = i; I was the intercept of the straight line (of slope i)

obtained by the method of least squares. Then a' was determined from

and _ from

4 { ad _ 16 P(AIIS2Ch) ]
a' : _ 4 - (1-1--_)Jl 16 P(_Al[SlCh)-ad

h=l

For the R0C analysis a

_h )_l-_ _d
(L_h)[l-(1-7h - 7h _] 7h

ad l--YhlP(AIICh) Fh I-_

ad

and d are tied together in the expression i-_

a'd

and a' and d are tied together in the expression 1-_° We can let

ad/16 : oI and a'd/16 = o2 and argue that in essence, only two param-

eters are being estimated here plus one more for the estimate of _.

As for Cases i and 2, those parameter values that yielded a minimum sum

of deviations of observed points from theoretical points were selected

for each subject.

For Case 4, d is again run in steps of i from i to 16_ for each

of these values

P(AiIslch)

a : [h dl 16 d i
:i _ (_-it) %=' _' : i-_)7

P( All 82C h
h:l

k

78
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Here the parameters a, d and a'_ d are distinct in the expressions for

P(AIlS2) and P(AIlS1) and hence are associated with three degrees of

freedom. We therefore set gh = 7h for this case. Again, those parameter

values estimated in this manner are selected that minimize Z(DEV) 2.

Tables lO and ll give the means and standard errors of the parameter

estimates, and the predicted and observed points in the ROC space. As

estimated for both groups, _ again reflects the bias to the A 2 response,

although not so dramatically as in Case lb; this probably results from the

capability of aI and c2 to reflect the A2 bias. The parameters a

and a' in Case 4 also predict the P(A1) asymmetry_ although through

intersignal confusion instead of signal-noise confusion.

Table 12 presents the goodness-of-fit measure for individuals in the

four conditions. Note that as predicted earlier subjects 8_ 9_ lO and ll

of Group 2 are fit much better by Case 3 than by any of the other cases.

This is due to a slope greater than one evident in their ROC data. Table

13 indicates that in terms of the number of subjects fit best, Case 5

provides the best description for Group l, but Case 4 is best for Group 2.

Overall, there is a tie between Case 3 and Case 4. The second part of

Table 13 shows the average of Z(DEV) 2 over subjects (excluding subject 5

in Group 1 and subject 3 in Group 2); of the three parameter models, Case 4

was supercendent for both groups. Thus, of the three-parameter models,

Case 4 provides the best description of the data. Finally_ it should be

remarked that in addition to providing a reasonable fit to the data in terms

of Z(DEV) 2 for each subjec% the models appear to do quite well in fit-

ting the group means. In particular, the approximations of the means of

the predicted values to the means of the observed values are quite striking

for Cases 1 and 2.
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Table 13.

Number of Subjects Fit Best By Each

of the Three Parameter Models

(Subjects with one or more ties for closest fit were omitted.)

Group 1 Group 2 Total

Case la 2 0 2

Case lb 1 1 2

Case 3 3 4 7

Case 4 1 6 7

Group 1

Group 2

Average E(DEV) 2

6 Parameters 3 Parameters

Case 1 Case 2 Case la Case lb

.008 .008 .080 .096

.020 .021 .066 .066

Case 3 Case 4

•089 .o75

.o61 .o47
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DISCUSSION

The result of the comparison of the straight line and the curvi-

linear fits to the ROC results was that they did equally well for Group i,

but the straight line provided a significantly inferior fit to that of

the curved line for Group 2o It may be that there is _ strong _ement

of curvilinearity in the Group 2 data that is unrelated to a higher sen-

sitivity on the less biased cues (in terms of variable sensitivity notions).

11owever, there is an aspect of the data that argues against this hypoth-

esis. Although sensitivity for the low-correlated cues did not differ

significantly from sensitivity for the high-correlated cues for Group 2,

it can be seen from Table 5 and Table 14 that those subjects who contri-

buted most heavily to the poorer performance by the straight-line fit

(primarily subjects 8, 9, i0, and Ii) had larger sensitivity indices

associated with one or more of their lower biased cues than for their

higher biased cues, and their higher biased cue-points tended to be

closer to the axes than was the case for other subjects. Thus, the source

of the difference in fit for the straight line and curved line was a dif-

ference in sensitivity_ furthermore, the resulting set of points could be

fit better by a curved line than by a straight line (as opposed to Group i

subjects who also had differences in sensitivity) because the points lay

along the axes where a signal detectability curve could fit them. There

were, of course, other Group 2 subjects with different sensitivity esti-

mates for the four cues, but the observed R0C points were distributed

further from the axes of the R0C space_ As noted earlier, a straight

line with variable slope would apparently fit subjects 8, 9, 10, and ii
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Sub-

Ject

1

2

3

4

5

6

7

8

9

lO

ll

12

Table 14.

Estimates of a

Group i

cl c2 c3 c4

.o2 .].4 .19 .05

•57 .66 .56 .52

•33 .33 .39 .24

•35 .44 .58 .36

.0_ .13 -,08 .02

•35 .39 .4O .42

.86 .gz .9o .9o

.65 .65 ,60 .6Z

.46 .42 .45 .47

•37 .37 .19 .22

.lo .2z .27 .12

.80 .76 .83 .73

Group 2

oz c2 03 04

.26 .21 .31 .40

.28 .35 .3o .29

.o4 .o5 .z? .oz

.72 .78 .80 .76

.26 .40 .38 .39

•15 .38 .18 .34

•22 .30 .21 .25

.Bi .65 .57 .63

•35 .4o .22 .24

.83 .88 .72 .75

•54 .77 .5o .41

.78 .64 .78 .72

Average .41 .45 .44 .39 .44 .48 .43 .43



in Group 2 quite well. It is reasonable that an experiment of the simple

detection or recognition type should have difficulty in distinguishing

between signal detectability curves and variable sensitivity theory

curves, since the less biased points are assumed in both theories to be

closer to (%1) in the ROC space than are the more biased points.

In application to the present experiment, Case i and Case 2 essen-

tially reduced to a fixed sample size model where

d d
P(AllSI)

and

d
P(_IS 2) = (1 - _)g .

Since the display size in the present experiment (16) was identical to

one of the conditions in an earlier experiment by Estes and Taylor

0965), it should be interesting to compare the present estimates of d

to their P, the estimated average number of elements (symbols) pro-

cessed according to the serial_processing model° From Tables 6 and 7 we

can see that the average d was approximately 6,5 for Group i and about

7 for Group 2. This is quite close to P = 5°57 for D = 16 in the

Estes and Taylor experiment°

Table 15 shows that estimates of d were _oughly consistent for

those models that did not assume probability matching (estimates o__ d

were not obtained for Case 9)° The reason that Cases la and 4 yield

larger estimates of d is probably that they explain the shift or asym-

metry in P(AI) across the cues by means of activation variables rather

than through the bias mechanism as do the other models. To the extent
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Table 15.

Estimates of d

for Various Recognition-Confuslon Models

Group 1

Subject Case 1 Case 2 Case la Case lb Case 4

1 l l 2 l 8
2 9 9 lO 7 Ii
3 6 5 6 6 9
4 7 6 lO 7 14
5 ! l -- l 5
6 6 6 8 6 ]i
7 14 14 16 14 15
8 i0 i0 12 i0 13

9 8 7 8 7 9
io 4 4 5 I 7
ii 2 2 3 2 5
12 12 12 14 14 14

Average 6.70 6.40 8.55 6.82 10.08

Group 2

Subject Case 1 Case 2 Case la Case lb Case 4

1 5 4 5 4 6
2 5 5 6 5 7
3 i i i i 2
4 12 12 15 14 15
5 5 5 6 5 7
6 4 3 5 5 i0

7 4 3 5 4 7
8 ll l0 12 lO 12

9 4 4 -- 4 9
io 13 12 15 13 15
11 9 8 lo 8 ll
12 12 ll 13 ll 13

Average 7.10 6.83 8.46 7.55 lO.18

O9



that this shift was an important characteristic of the data, the estimates

of d will differ for the two types of models.

In a different type of psychophysical experiment, Sperling

(1960) and Averbach and Sperling (1961) found under stimulus conditions

comparable to those in the present experiment that approximately 3/4 of

the presented letters were "available" to the subjects. In the present

experiment this would mean that 12 letters were available to the subjects.

Although the average value of d for the best fitting three-parameter

model, Case _ (about lO_ was substantially larger than d for the other

cases, d is still less than 12o The probable reason for the disparity

between Sperling's values and our estimated values of d is that his

subjects were not required to process all 12 letters. Thus, it may be

that the subject selects a sample from the available pool of symbols

which he then proceeds to process. An alternative model that might do

well would assume that d is equal to the number of symbols initially

available but that a decay of the type postulated by Estes and Taylor

(1964) sets in immediately after stimulus offset. If this were the case,

d would have to be an increasing function of D, according to experi-

ments involving different values of D performed by Estes and Taylor

(1965) and Sperling (1960).

A striking facet of the data which was not commented on earlier is

the increase in the sensitivity estimates (_h) over test sessions. Note

that while this result may cause some difficulty in the exact interpreta-

tion of the estimated parameters, as long as a changes in the same way

for the different cues, this change does not affect the comparison between

theories that predict straight line ROC curves and theories that predict

curvilinear ROC curves_ This follows from the fact that an average of

9o



straight lines is a straight line. Figures ii and 12 were obtained using

the fixed sample size model where ah represents d/16 (d was not con-

strained to integral values here) and the bias parameters were estimated

separately for each cue and subject, and averaged over subjects in each

group. Note that the increase in Ch is not accompanied by a regression

of the gh toward 1/2 as one might predict under the variable sensi-

tivity concept. It is also interesting that Group 1 shows an increasing

shift in the bias parameters toward A2. Support would be lent to the

notion that the P(A1) asymmetry was due to an E2 advantage over El,

as opposed to the hypothesis that Z2, e, was more confusable with the

noise symbols than was Zl_ _] had Case lb fit Group 1 subjects better

than did Case la. Also, Group 2 wa____sfit better by Case lb than by Case la,

but showed no gl decrease over days.

It is apparent from an examination of the bias functions for Group 2

that the gh does not accurately reflect the experimental correlations,

since gl > g2 but 71 < 72 and g4 < g3 but 74 > 73. The reason for

this failure by Group 2 to follow the schedule may be spatial generaliza-

tion. The linear arrangement of the cue lights was such that C1 and C4

were always on the outside, but C2 and C3 were always on the inside.

Although C2 and C3 were the more highly correlated cues for Group 2,

their proximity and the subjects' knowledge that the two cues on either

side were positively correlated with different stimulus events may have

led to their failure to learn the actual cue-stimulus correlations.

The superiority of Case 4 (over the other three-parameter models

considered) in explaining the ROC data is somewhat surprising in view of

comments by the subjects obtained after the experiment. The prevalent
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response _as that several of the noise symbols, B and G in particular#

were often confused with e but that few if any of the noise symbols were

ever confused with O. The failure of Case la to do a better Job than it

did is possibly due to the untenability of the assumption that all the

Z0 symbols were alike in confusability with the signal symbols. However 3

one might expect that this would be remedied in the estimations by the

high u value. An additional possibility that would be interesting to

test is that Case la might do as well or better than Case 4 if gh were

treated as a free parameter. That is, the probability matching con-

straint may not have affected Case la and Case 4 to the same extent. On

the other hand 3 since the basic form of both signals was a circle, it is

reasonable that there should be confus _ _ ...... _ and _3 a1+h_ug _

the source of the asymmetry in confusion is not clear. The superiority of

Case 4 to Case 3 is probably due to the incapa_ty of Case 5 to provide for

the A2 bias without increasing the slope of the ROC curve. A detailed

description of the data might involve an activation matrix with entries in

all the cells, but it seems likely that Inter-signal confusion _as a

potent factor.

The remainder of the discussion will be devoted to the latenaies

and the confidence-rating results.

Examination of Fig. 9 leads to the conclusion that if the recog-

nition models applied to the ROC data can fit the latencies in this

experiment at all# they must do so by virtue of the Tk included to

represent the number of _t units required to make a guessing response.

This is not to imply that the model is wrong_ it does say that the form

of the latency functions as the guessing bias g varies is determined

by v rather than by _ which predicts (for example) an increase in



AI latencies as g increases. This prediction is contrary to the experi-

mental results. Even allowing a different • for the preferred and non-

preferred responses is not sufficient, since someof the latencies appear

to change continuously as a function of Y (and therefore g). Since

the present model does not describe how T changes as a result of changes

in g, a detailed quantitative fit would seemunwarranted. However_it

is interesting to note in the present context that under the fixed sample

size model, the difference in the incorrect latencies conditionalized on

the occurrence on the non-preferred response and the preferred response

should be simply Tp, - Tp. Estimating this difference, we obtain

T , - T =
8o IflSeC. for Group i

P P t136 msec. for Group 2

Neither of these quantities is far from the average difference of 50 msec.

in non-preferred and preferred response latencies obtained recently in a

probability learning study (Friedman, et al., 1964).

One reasonable alternative to the hypothesis that the negative

correlation between latencies and Y is due completely to T, is that

on some proportion of trials the subject, because of eyeblink, inattention,

eye tremor, etc., fails to obtain any sample at all and therefore responds

at once using his guessing bias. Actually,_this phenomenon was reported

fairly often by the subjects.
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If such trials were frequent relative to the number of trials when the

subject guessed after having processed all the symbols, then the kind of

latency results obtained here would be expected. This could occur only

if a model that allowed a fairly high rate of inter-symbol confusion ex-

plalned the data.

An explanation man be obtained for the present confidence-ratlng

results from the reeognltion-confusion models by assuming that the sub-

Ject partitions the time following stimulus offset into 4 successive

At periods, or what amounts to the same thing, partitions the set of

possible activation positions into 4 distinct subsets. Suppose that if

an activation occurs in the most recent or first set of positions, he

gives his response a rating of one; if an activation occurs in the sec-

ond set, he gives it a rating of two. This continues until either an

activation occurs in a position located in the last set or the subject

processes all the symbols and then guesses 9 if either of these events

occurs, he uses CR 4. The results (see Fig. 10) indicate that the

subjects were able to reserve CR 4 for guessing responses. This is

shown by the tendency to convergence of the P(_IS1 ) and P(_IS2)

curves until they reach CR4} at this place both curves move in the

direction of the bias. The decrement in performance for CR 1

implies that the activation parameters must be a function of

instance, Case 4 might take on the form:

to CR 3

i_t. For

N i =

sO sI s 2

Z0 --[1 0 0

vl

96



If we suppose that CE4 is reserved for guesses and that ak is the

_k then

ak
j-1

vI ak_1 .. ak-ak_1
ak_l +I v1 (_-v I ;

PC_Lslc_)= -- (k< 4)
ak-ak_ 1 (l-Vl) (ak-ak_ 1 ) '

maximum positlon included in

ak

(l-v_-I)
ak_l+l '

P¢Sts2c_) = =1 -
ak-ak_ 1

ak-1 ,_ ak'ak-l_

v 2 _i-v 2 )

(1-v2)(ak-ak_i; '
(k < 4)

P(5]sj.c%)=P(Sls2c_4)--g, _ =4 .

To obtaln an idea of how this function appears I let ak-ak_ 1 = 4

all k < 43 then

for

if k < 4

g k=4

P¢A_Is2_)

4(k-l)

4(!-v 2)

k=4 .

The qualitative form of these expressions is in line with the results and

indicates that meaningful predictions for confidence ratings can be de-

rived from the recognltion-confuslon models. To obtain a quantitative fit,
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the bounds of the partitions probably should be estimated and possibly

several forms of the activation matrix considered. Note I however, that

a constant Ni cannot explain the decrement in performance that occurs

as a function of k.
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SUMMARY

A cued-recognition paradigm was used to investigate behavior in a

psychophysical task that minimized the role of immediate memory but maxi-

mized discrimination behavior. A class of models that generates predic-

tions for several characteristics of a subject's choice behavior was

developed and applied to the R0C data for each subject. Certain models

appeared to provide an accurate description of the ROC results on a group

and individual basis, according to an orthogonal regression measure of

goodness of fit. Table 16 summarizes the various special recognition-

confusion models applied to the present data.

Cases 1 and 2, when applied to the R0C data, reduced to fixed sample

size models with N. = I, the identity matrix. Case 4, which assumes
1

intersignal confusion but no signal-noise or noise-signal confusion, fit

the best of the four three-parameter models applied to the ROC data.

Under constraints on the gh values, Cases la and lb did not reduce to

the fixed sample size models for several subjects, but estimates of u

remained high, thus supporting the notion of a low average noise-signal

confusion. There is an element of curvilinearity in the observed ROC

points which does not appear to follow from signal detectability assump-

tions. This curvilinearity could be associated with a sensitivity varia-

tion caused hy differences in the bias parameter of the recognition-

confusion model.

The fixed sample size model correctly predicts that when d > l,

the incorrect latencies will be longer than the correct latencies. How-

ever, the recognition-confusion models, as they are presently formu_ed,
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Table 16

Summary of Recognition-Confusion Models Applied to Present Data

(For all the models below_ the sample S consists of d symbols
sampled at random°)

s O s I s 2

Case i N i = Z I i All gh values
estimated.

Z 2 _ 0

Case 2 N i

so s I s2

= Z I i All gh values
estimated.

Z 2 0 i

Case la

sO s I s2

zo [_ (i-u)q(;-_)(i-q)7

Ni = Z1 I0 1 0
Z 2 0 0 1

gh = _h "

Case ib

s O sI s2

N i = Z I i

Z 2 0

Yh

gh = yh+(l-Yh)q) "

So _ s2

*Case 3 N i = Z 1 1-a a 0 gh = 7h+(l-Th)q0 "

Z 2 -a' 0 a'

s o sI s 2

Z 0 1 0 0

Case 4 N i = Z I a l-a gh = Yh "

Z 2 l-a ' a'

Case 3 appears to have four parameters, but a and d, and a'

combine in such a way in the R0C space that essentially 2 parameters,

Q2 are being estimated where

P(AlIS1) = _l + (l-°l)g '

P(AILs 2) : (i-o2)g .

and d

o I and
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do not seem particularly helpful in explicating the finer aspects of the

latency results obtained in this experiment.

It was shown that particular recognition-confusion models are

capable of yielding confidence-rating predictions that are in general

agreement with the data°

Estimates of the number of symbols processed by the subjects com-

pared favorably with earlier estimates in similar experiments, and these

results were discussed with regard to other methods of studying the num-

ber of symbols apprehended in a brief interval°
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Table A-I.

Table A-2.

Table A-3.

Table A-4.

Table A-5.

Table A-6.

Table A-7.

Table A-8°

Appendix

ObservedValues of P(AIIS2) and P(AIISI) for the

Separate Cues°

ObservedValues of Proportion Correct P(c) for the

Separate Cues°

Average Latencies for Each Subject and Cue (Group i,

Subjects 1-6)o

Average Latencies for Each Subject and Cue (Group i,

Subjects 7-12).

Average Latencies for Each Subject and Cue (Group 2,

Subjects 1-6).

Average Lateneies for Each Subject and Cue (Group 2,

Subjects 7-12).

g Estimates for the Fixed SampleSize Model (Group i)o

g Estimates for the Fixed SampleSize Model (Group 2).
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Subject

Group i

i

2

3

4

5

6

7

8

9

lO

ll

12

Aver•

Group 2

i

2

3

4

5

6

7

8

9

lO

ll

12

Aver.

CI

P(All S1)

Table A-I

0bserve_Wlues ofP(AIIS2)an_P(AllSI)
for the Separate Cues

C2 C3

P(AIIS2) P(Alls1) P(_Is2) P(AIISp

•886 .910 .597 •737 •498 .696 .504 .547

•348 .918 •207 .865 .049 •606 •027 .541

•381 •713 •336 .655 .184 •578 •205 •442

.218 .572 .156 •599 .163 •543 •150 •506

901 •918 .737 .870 .486 •418 •264 .300

312 .683 .228 .631 .094 .504 .034 .493

089 .951 .049 .958 .028 .924 .026 .922

169 .822 .162 .813 .066 .669 .037 .644

367 .822 .393 .808 .127 .573 .109 .578

589 •959 •587 .963 .033 •224 •019 •236

.831 •930 .278 .484 .121 .385 •202 •322

•079 .873 .092 .848 .052 .879 .045 .767

•431 •839 .318 •770 .159 •583 •135 •525

•890 .613 .841 .082 •333 •056 •475

•834 .484 .860 •098 •407 •093 .382

•933 .917 .944 .038 .194 .105 •090

.829 .086 .861 .038 .833 .034 .798

•875 .444 .840 .045 .429 .054 .440

.737 .323 .713 .256 .424 .180 .514

784 •472 •769 .140 •353 •164 •413

959 .297 .953 .034 .588 •030 .663

781 •400 .801 .056 .265 •037 .278

962 •086 .965 .o16 .755 .015 .767

951 .167 .934 .032 .500 .075 .477

843 •306 •950 •022 •794 .011 •721

.865 .383 •869 .o71 .488 .o71 .502

•6oo

•551

•921

•112

.614

•636

•567

.146

•442

• 131

.420

•o67

.434

lO3



Table A-2

Observed Values of Proportion Correct

for the Separate Cues

Group i

Sub-

ject C1

1 .706

2 .849

3 .690

4 .624

5 .710

6 .685

7 .941

8 .824

9 .775

i0 .820

ll .741

12 .885

P(c)

c2 c3 c4

.6o2 .577 .5o9

.836 .812 .866

•.659 .722 .706

•697 .718 .765

.620 .477 .631

.688 .752 .852

•955 .953 .961

.823 .828 .883

.728 .753 .812

•742 .668 .795

.580 .682 .678

.872 .920 .909

Aver. .771 .734 .738 .781

Group 2

c2 c 3 c4

.796 .862 .825

.825 .856 .775

.858 .884 .694

.866 .949 .924

.810 .901 .821

•709 .709 .744

.744 .811 .729

•927 .930 .892

•781 .879 .790

.960 .960 .930

•923 .923 .814

•924 .960 .923

CI

i .772

2 .743

3 .719

4 .844

5 .754

6 .643

7 .696

8 .932

9 .726

IO .939

Ii .860

12 .865

Aver. .791 .844 .885 .821
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Group 1

Subject

1

2

4

Table A-3

Average Latencies for Each Subject and Cue

 ( IAlS1)  (LIA S2)  ( IA2SI)  ( IA2S2)

CI 1.217 1.299 1.506 1.365 1.259

02 1.284 1.340 1.448 1.315 1.328

C 3 1.335 1.437 1.502 1.393 1.403

C4 1.280 1.328 1.513 1.359 1.354

CI 1.116 1.275 1.438 1.134 1.153

C2 1.138 1.534 1.499 1.066 1.117

C3 1.078 1.592 1.317 1.116 1.153

04 1.061 1.480 1.338 i.053 i.095

CI 1.102 1.345 1.208 .985 1.130

C2 1.011 1.344 1.259 .996 1.103

C3 .922 1.228 1.301 1.065 1.090

C4 .858 1.306 i.i02 1.007 i.050

CI .978 1.193 .956 .862 .960

C2 .975 1.220 .949 .838 .938

C3 .927 1.122 .941 .861 .915

C4 .973 1.103 .984 .855 .914

CI .907 .942 1.301 1.906 .964

C2 1.041 1.080 1.255 1.374 1.105

C 3 1.025 1.032 1.216 1.137 1.105

C4 1.270 1.059 .849 1.086 1.054

0i .955 i.i28 .967 .914 .964

C2 .916 .970 .954 1.021 .962

C3 .916 1.139 1.017 .910 .945

C4 .739 1.380 1.015 .891 .900

io5



Group i

Subject

I0

Ii

12

Table A-4

Average Latencies for Each Subject and Cue

_(LIAlS1) _(LI_s 2) _(LIA2SI) _(LlA2s2)

CI 1.326 1.785 1.618

C2 1.354 1.764 1.760

C3 1.348 1.915 1.697

C4 1.357 1.800 1.623

C1 .958 1.155 1.189

C2 .930 1.271 1.262

C3 .947 1.486 1.063

C4 .967 1.277 1.153

CI 1.318 1.736 1.714

C2 1.458 1.711 1.830

C3 1.477 1.938 1.574

C4 1.567 1.889 1.514

CI 1.613 1.664 1.813

C2 1.651 1.624 1.839

C3 1.657 1.741 1.676

C4 1.700 1.824 1.676

C1 1.073 1.072 1.365

C2 1.291 1.399 1.319

C3 1.285 1.377 1.257

C4 1.333 1.427 1.346

CI 1.163 1.473 1.578

C2 1.158 1.465 1.538

C3 1.155 1.432 1.566

C4 1.200 1.539 1.511

1.299

1.331

1.325

1.323

.919

.948

.955

.9O8

1.397

1.437

1.353

1 _Q7._,

1.605

1.591

1.632

1.634

1.547

1.329

1.258

1.269

1.129

1.157

1.173

1.2o2

E(L)

1.34o

1.363

1.355

1.346

.989

.995

.988

.95o

1.422

1.535

1.464

.#_

1.626

1.639

1.65o

1.649

1.1o8

i. 323

1.270

1.311

i. 201

1.204

i. 194

1.231
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Group 2

Subject

Table A-5

Average Latencies for Each Subject and Cue

E(LIAlSI) 2) E( IA2Sl)  (LIA2S2)

C1 1.527 1.707 1.438 1.311 1.525

C2 1.469 1.691 1.668 2.161 1.538

C3 1.176 1.820 1.449 1.255 1.307

C4 1.386 1.715 1.369 1.209 1.273

CI 1.296 1.495 1.513 1.259 1.346

C2 1.249 1.932 1.397 1.225 1.302

C3 1.297 1.233 1.190 1.194 1.201

C4 1.290 1.535 1.243 1.054 1.141

C1 .967 1.028 1.163 1.319 • .998

C2 .931 .929 1.175 1.077 .944

C3 1.257 1.327 .856 .820 .849

C4 1.260 1.295 .858 .865 .906

C1 .793 1.469 1.248 .648 .882

C2 .795 1.307 1.168 .841 .850

C3 .802 1.192 1.285 .818 .837

C4 .839 1.464 1.252 .837 .874

CI .984 1.063 1.399 1.190 1.055

C2 1.005 1.041 1.286 1.183 1.058

C3 1.128 1.345 .936 .950 .973

C4 1.139 1.427 1.037 .936 .992

C1 1.843 1.867 1.969 1.742 1.862

C2 1.848 1.946 1.939 1.830 1.873

C3 1.680 1.957 1.955 1.737 1.798

C4 1.767 1.989 1.885 1.778 1.818
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Group 2

Subject

8

i0

ll

12

Table A-6

Average Latencies for Each Subject and Cue

E( IAIS1) E( IAIS2) E( IA2Sl) E(LLA2S2)

C1 1.452 1.509 1.771 1.638 1.532

C2 1.507 1.665 1.844 1.584 1.589

C3 1.658 1.667 1.806 1.584 1.611

C4 1.602 1.785 1.785 1.595 1.647

C1 1.403 1.740 1.533 1.316 1.401

C2 1.415 1.517 1.508 1.434 1.423

C3 1.324 1.680 1.619 1.371 1.388

C4 1.353 1.734 1.615 1.360 1.389

CI 1.484 1.622 1.722 1.461 1.535

C2 1.490 1.800 1.701 1.481 1.540

C3 1.511 1.803 1.459 1.239 1.290

C4 1.554 2.186 1.408 1.251 1.527

C1 1.479 2.096 1.700 1.383 1.485

C2 1.490 1.743 2.100 1.342 1.497

C3 1.468 2.138 2.141 1.346 1.386

C4 1.542 2.350 1.694 1.357 1.424

cI 1.021 1.209 1.315 1.3oo 1.091

c2 1.071 .925 1.679 1.241 1.119

C3 1.018 1.418 1.122 1.033 i.047

C4 1.053 1.438 1.349 1.168 1.193

C1 1.444 1.678 1.574 1.334 1.438

C2 1.358 1.607 1.872 1.467 1.397

C3 1.414 1.777 1.494 1.350 1.366

C4 1.495 1.573 1.592 1.339 1.386
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